
PHYSICAL REVIEW E APRIL 1999VOLUME 59, NUMBER 4
Dynamic moment invariants for nonlinear Hamiltonian systems
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Distributions of particles being transported through a nonlinear Hamiltonian system are studied. Using
normal form techniques, a procedure to obtain invariant functions of moments of the distribution is given.
These functions are invariant for the given Hamiltonian system and are called dynamic moment invariants.
These techniques are used to obtain dynamic moment invariants for the nonlinear pendulum Hamiltonian
system.@S1063-651X~99!13703-6#

PACS number~s!: 41.85.2p, 45.05.1x
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I. INTRODUCTION

We consider a particle distribution being transported
der the action of a nonlinear Hamiltonian system. It would
useful to obtain quantities that remain invariant under t
transport. To this end, we study invariant functions of m
ments of the distribution. Functions of moments that rem
invariant for all linear Hamiltonian systems~belonging to the
class of kinematic invariants! have already been constructe
@1–3#. Dynamic moment invariants~which remain invariant
for a given Hamiltonian system! have been investigated fo
linear systems@3#. In this paper, we construct dynamic m
ment invariants for nonlinear Hamiltonian systems.

In Sec. II, we provide a brief background to Lie algebra
methods and moments of distribution. In Sec. III, we outli
a procedure for constructing dynamic moment invarian
This makes use of normal form techniques for symplec
maps. In Sec. IV, we construct dynamic moment invaria
for the nonlinear pendulum Hamiltonian. We first obtain
symplectic map corresponding to this system, and comp
its normal form. Then we apply techniques described in S
III to obtain the dynamic moment invariants. Our concl
sions are given in Sec. IV.

II. PRELIMINARIES

In this section we briefly describe the Lie algebraic to
@4# and concepts required for our purpose. We also introd
moments of a particle distribution and describe their tra
port under the action of a general Hamiltoninan system.

We start by defining Lie operators. Let us denote
collection of 2n phase-space variablesqi ,pi ( i
51,2,3, . . . ,n) by the symbolz:

z5~q1 ,p1 ,q2 ,p2 . . . ,qn ,pn!. ~2.1!

The Lie operator corresponding to a phase-space func
f (z) is denoted by :f (z):. It is defined by its action on a
phase-space functiong(z) as shown below:

: f ~z!:g~z!5@ f ~z!,g~z!#, ~2.2!
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where@ f (z),g(z)# denotes the usual Poisson bracket of t
functions f (z) andg(z). Let f r be a homogeneous polyno
mial in z of degreer . Then@ f r , f s# is a homogeneous poly
nomial of degree (r 1s22). Next we define the exponentia
of a Lie operator. It is called a Lie transformation, and
given as follows:

e: f ~z!:5 (
n50

`
: f ~z!:n

n!
. ~2.3!

Consider the action of a~nonlinear! Hamiltonian system
specified by the HamiltonianH(z,t) on a particle. Letzi

denote the phase-space coordinates of the particle at timt i ,
and zf the coordinates at some final timet f . Then one can
find a mapM, such that

zf5Mzi . ~2.4!

It can be shown@4# that this map is symplectic~i.e., its
Jacobian matrixM satisfies the symplectic conditionM̃JM
5J, whereJ is the fundamental symplectic matrix!. By the
Dragt-Finn factorization theorem,M can be written as an
infinite product of Lie transformation in the form@4#

M5M̂e: f 3 :e: f 4 :••• ~2.5!

whereM̂ is the Lie transformation corresponding to the Jac
bian matrixM @i.e., (M̂z) i5Mi j zj ]. Each functionf m is a
homogeneous polynomial of degreem.

We have considered the action of a Hamiltonian syst
on a single particle. We now consider its action on a parti
distribution. Leth(z) be a distribution function describing
particle density in phase space at the point having coo
natesz. We assume that the particles do not interact with o
another~alternatively, the effects due to particle interactio
should be treatable by the Vlasov approximation!. Again,
representing the Hamiltonian system in terms of a symple
mapM, we can show that@4,3#

hfin~z!5hin~M21z!, ~2.6!

wherehin and hfin are the initial and final distributions, re
spectively.

Next we define moments of the above distribution, a
determine their evolution under the action of the Ham

-
:
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tonian system~or equivalently the corresponding symplec
mapM). Let $Pa(z)%@a51,2,3, . . . ,N(m)# denote the se
of basis monomials of a fixed degreem in the 2n phase-
space variables whereN(m)5m12n21Cm . EachPa(z) cor-
responds to a uniquemth-order basis moment̂Pa(z)&
through the relation:

^Pa~z!&5E d2nz8h~z8!Pa~z8!. ~2.7!

The initial and final moments of the distribution before a
after transport through a Hamiltonian system are there
given by

^Pa~z!& in5E d2nz8hin~z8!Pa~z8!, ~2.8!

^Pa~z!&fin5E d2nz8hfin~z8!Pa~z8!. ~2.9!

Using the relation between the initial and final distributi
given in Eq.~2.6!, we can give a relation between the initi
and final moments@3#:

^Pa~z!&fin5E d2nz8hin~z8!Pa~Mz8!. ~2.10!

We write this formally as

^Pa~z!&fin5M^Pa~z!& in. ~2.11!

SinceM can be expressed in terms of Lie operators, it
useful later on to have the following relation~see Appendix
C of Ref. @3#!

: f :^Pa~z!&5^: f :Pa~z!&. ~2.12!

III. DYNAMIC MOMENT INVARIANTS FOR
HAMILTONIAN SYSTEMS

A. General concepts

A function of moments that remains invariant under tra
port through all Hamiltonian systems is called a kinema
moment invariant. Kinematic moment invariants for line
Hamiltonian systems have already been obtained@1,3#. We
call functions of moments that remain invariant only und
the action of a particular Hamiltonian system~or the equiva-
lent symplectic map! dynamic moment invariants. Dynami
moment invariants for linear Hamiltonians have already b
derived@3#. In this paper, we consider dynamic moment
variants for nonlinear Hamitonians.

Consider a nonlinear Hamiltonian system described
the symplectic mapM. We denote a dynamic moment in
variant that is a function ofkth-order moments byDk . Since
Dk is invariant under the action ofM,

Dk5MDk . ~3.1!

To construct these dynamic moment invariants, we cons
the normal form@5,4# of M:

M5A21NA, ~3.2!
re
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where

N5e:h:. ~3.3!

For a nonresonant Hamiltonian@6#,

h5 f ~J1 ,J2 ,J3, . . . ,Jn!, ~3.4!

where

Ji5
~qi

21pi
2!

2
. ~3.5!

First, we find a functionIk that is invariant underN. That
is,

Ik5NIk , ~3.6!

whereIk is a function ofkth order moment invariants. Let

Dk[A21Ik . ~3.7!

Then, using Eqs.~3.2!, ~3.6!, and~3.7!, we obtain

MDk5A21NADk

5A21NAA21Ik

5A21NIk5A21Ik5Dk . ~3.8!

Thus we see thatDk is a dynamic moment invariant of th
mapM. Note that the above procedure has been used
viously to find functions of phase-space variables that
invariant under the action of a symplectic map@4#. Here we
have extended this to moments.

B. Normal form moment invariants

From the above discussion it is obvious that the first s
toward finding dynamic invariants is to find moment inva
antsIk for symplectic maps in the normal form

e:h:Ik5Ik , ~3.9!

which implies

S 11:h:1
:h:2

2
1••• DIk5Ik . ~3.10!

Thus a sufficient condition for the above equation to be t
is

:h:Ik50. ~3.11!

For a nonresonant Hamiltonian, we have already seen thh
is a function only of theJi ’s. In this case, the above equatio
is satisfied if the following annihilation conditions hold:

:Ji :Ik50, i 51,2,3, . . . ,n. ~3.12!

In fact, Ik is a function of moments that is invariant und
U(1)^ U(1)^¯^ U(1), taken n times. For convenience
we will call Ik a ‘‘kth-order normal form moment invari
ant.’’

With this brief background, we are in a position to co
struct the normal form moment invariants. Consider the
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of basis monomials of a fixed degreem, $Pa(z)%, $a
51,2, . . . ,N(m)%. A general element of$Pa(z)% is given by
the relation

Pa~z!5)
i 51

n

qi
r ~ i !

pi
s~ i !

, ~3.13!

where r (1)1s(1)1•••1r (n)1s(n)5m. There is a unique
mth-order basis moment associated with each$Pa(z)%
through the relation given in Eq.~2.7!. Let Im

( l ) be a function
of mth-order moments defined as follows:

Im
~ l !5AjWj

~m! , ~3.14!

where the repeated indexj is summed over. The coefficient
Aj ’s are constants andWj

(m)’s are the product ofl mth-order
basis moments. Therefore,Wj

(m)’s are of the form

^Pa1
~z!&^Pa2

~z!&¯^Pa l
~z!&, ~3.15!

wherea1<a2<•••<a l .
For Im

( l ) to be a normal form moment invariant, it has
satisfy the following equation@cf. Eq. ~3.12!#:

:Ji :Im
~ l !5Aj :Ji :Wj

~m!50, i 51,2, . . . ,n. ~3.16!

Thus our task reduces to determining the constantsAj ’s such
that the above equation is satisfied. A moment invarian
the formIm

( l ) is called a pure invariant, since it is a functio
of moments of the same orderm. One can also derive mixe
invariants which are functions of moments of different o
ders.

C. Examples

In this subsection, we derive explicit expressions for va
ous normal form moment invariants to illustrate how the
invariants are found. First, we derive the expression forI 2

(1) .
f

-
e

We restrict ourselves to two-dimensional phase space
simplicity. The most general form ofI 2

(1) is then given by

I 2
~1!5A1^q1

2&1A2^p1
2&1A3^q1p1&, ~3.17!

where A1 , A2 , and A3 are as yet undetermined constan
These constants are fixed by ensuring that the following
nihilation condition is satisfied@cf. Eq. ~3.16!#:

:J1 :I 2
~1!50, ~3.18!

where

J15
q1

21p1
2

2
. ~3.19!

That is,

:q1
2 :I 2

~1!1:p1
2 :I 2

~1!50. ~3.20!

The above condition implies thatA25A1 ~whereA1 is arbi-
trary! andA350. Thus we finally obtain

I 2
~1!5A1~^q1

2&1^p1
2&!. ~3.21!

The expressions forI 2
(1) in four- and six-dimensiona

phase space, respectively, are given as follows~here the con-
stantsA1 , A2 , andA3 are arbitrary!:

A1~^q1
2&1^p1

2&!1A2~^q2
2&1^p2

2&!, ~3.22!

A1~^q1
2&1^p1

2&!1A2~^q2
2&1^p2

2&!1A3~^q3
2&1^p3

2&!.
~3.23!

Using the above procedure, we can easily derive exp
sions for other quadratic moment invariantsI 2

( l ) , for higher
values ofl . For a two-dimensional phase space, two of th
are given below~here the constantsA1 andA2 are arbitrary!:
I 2
~2!5A1~^q1

2&21^p1
2&2!1A2^q1

2&^p1
2&1~2A12A2!^q1p1&

2, ~3.24!

I 2
~3!5A1~^q1

2&31^p1
2&3!1A2~^q1

2&^p1
2&21^q1

2&2^p1
2&!1~3A12A2!~^q1

2&1^p1
2&!^q1p1&

2. ~3.25!

Next we derive the expression forI 3
(2) where each term is a product of two cubic moments. The most general form ofI 3

(2)

~in a two-dimensional phase space! is given by

I 3
~2!5A1^p1

3&21A2^p1
3&^q1p1

2&1A3^p1
3&^q1

2p1&1A4^q1
3&^p1

3&1A5^q1p1
2&21A6^q1p1

2&^q1
2p1&

1A7^q1p1
2&^q1

3&1A8^q1
2p1&

21A9^q1
2p1&^q1

3&1A10̂ q1
3&2. ~3.26!

Applying Eq. ~3.16!, we obtain

~6A122A322A5!^p1
3&^q1p1

2&1~2A223A42A6!^p1
3&^q1

2p1&2A2^p1
3&21~3A222A6!^q1p1

2&21~A32A7!^p1
3&^q1

3&

1~3A314A523A724A8!^q1
2p1&^q1p1

2&1~3A41A622A9!^q1
3&^q1p1

2&1~2A623A9!^q1
2p1&

2

1~2A712A826A10!^q1
3&^q1

2p1&1A9^q1
3&250. ~3.27!

Setting the coefficient of each independent term to be zero, we obtain
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A250, A15A10, A35A7 ,

A450, A553A12A3 , ~3.28!

A650, A85A5 , A950.

Thus we finally obtain

I 3
~2!5A1~^q1

3&21^p1
3&2!1~3A12A3!~^q1p1

2&21^q1
2p1&

2!A3~^q1
3&^q1p1

2&1^p1
3&^q1

2p1&!, ~3.29!

whereA1 andA3 are arbitrary constants.
Using the above procedure, we can also derive the following quartic moment invariants~again,A1 and A2 are arbitrary

constants!:

I 4
~1!5A1~^q1

4&1^p1
4&12^q1

2p1
2&!, ~3.30!

I 4
~2!5A1~^q1

4&21^p1
4&2!1A2~^q1

4&1^p1
4&!^q1

2p1
2&1 1

2 A2^q1
4&^p1

4&

1 1
2 ~12A12A2!^q1

2p1
2&21~4A12A2!~^q1

3p1&
21^q1p1

3&2!. ~3.31!
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D. Functionally independent invariants

In this subsection, we enumerate the functionally indep
dent normal form moment invariants. We observe that th
is only one functionally independent invariant in the mome
invariants of the formI 2

(1) , viz.

^q1
2&1^p1

2&. ~3.32!

All the otherI 2
(1) invariants are obtained by multiplying th

above equation by a scalar. For theI 2
(2) invariants, there are

only two functionally independent invariants, viz.

^q1
2&21^p1

2&212^q1p1&
2 ~3.33!

and

^q1
2&^p1

2&2^q1p1&
2. ~3.34!

These are obtained by assigningA151, A250 andA150,
A251, respectively, in Eq.~3.24!. All the otherI 2

(2) invari-
ants are obtained by a linear combination of the above
functionally independent moment invariants.

Using the above procedure, we find that there are
functionally independentI 3

(2) invariants given by

^q1
3&21^p1

3&213^q1
3&^q1p1

2&13^p1
3&^q1

2p1& ~3.35!

and

^q1p1
2&21^q1

2p1&
22^q1

3&^q1p1
2&2^p1

3&^q1
2p1&.

~3.36!

The single functionally independentI 4
(1) invariant is given

by

^q1
4&1^p1

4&12^q1
2p1

2&, ~3.37!

and the two functionally independentI 4
(2) invariants are

given by
-
re
t

o

o

^q1
4&21^p1

4&216^q1
2p1

2&214^q1
3p1&

214^q1p1
3&2

~3.38!

and

^q1
4&1^p1

4&^q1
2p1

2&1 1
2 ^q1

4&^p1
4&

2 1
2 ^q1

2p1
2&22^q1

3p1&
22^q1p1

3&2. ~3.39!

Similarly, we can easily find the functionally independe
moment invariants of the otherIm

( l )’s. Once we have the
above normal form invariants, we can easily find the cor
sponding dynamic invariants for a particular Hamiltoni
system by using Eq.~3.7!.

IV. DYNAMIC MOMENT INVARIANTS FOR THE
NONLINEAR PENDULUM HAMILTONIAN

In this section, we will obtain the dynamic moment in
variants for a distribution of particles going through a pote
tial given by the pendulum Hamiltonian. We consider t
pendulum Hamiltonian, since it is a prototypical nonline
Hamiltonian system. Further, explicit results can be writt
down in this case. But the method outlined in this pape
equally applicable to any other nonlinear Hamiltonian s
tem. The expressions for moment invariants, however,
complicated for a general system, and hence cannot be w
ten in a compact form. For this reason, we have not con
ered such systems in this paper even though the full powe
the Lie algebraic approach becomes evident only in s
cases. For such complicated systems, no analytic solut
are available and the invariants cannot be written down
direct methods. Thus a perturbative~Lie algebraic! approach
outlined below in this section is the only viable solution. T
obtain the dynamic moment invariants, we first need
symplectic map corresponding to the pendulum Hamiltoni
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A. Pendulum map

We consider the pendulum HamiltonianH(q1 ,p1),

H~q1 ,p1!5
1

2
p1

22cos~q1!11. ~4.1!

On expanding, we have

H~q1 ,p1!5H21H41¯, ~4.2!

where

H25
1

2
p1

21
1

2
q1

2 , H452
1

4!
q1

4 . ~4.3!

The symplectic mapM corresponding to the pendulum
Hamiltonian is given by

M5M̂e: f 3 :e: f 4:•••. ~4.4!

The Jacobian matrixM is given by a 232 rotation matrix
@7#:

M5S cost sint

2sint cost D . ~4.5!

Since H2n1150 (n51,2, . . . ), we have f 2n1150 (n
51,2, . . . ). Inparticular, f 350. The fourth degree polyno
mial f 4 is given by@4,7#

f 45E
0

t

dt8H4~M 21z!5
1

24E0

t

dt8~q1 cost82p1 sint8!4.

~4.6!

On integrating we obtain

f 45c1q1
41c2p1

41c3q1
3p11c4q1

2p21c5q1p1
3 , ~4.7!

where

c15 1
192~3t1 1

4 sin 4t12 sin 2t !,

c25 1
192~3t1 1

4 sin 4t22 sin 2t !, ~4.8!

c352 1
24 ~12cos4 t !, c45 1

128~4t2sin 4t !,

c552 1
24 ~sin4 t !. ~4.9!

In principle, we can also calculate the higher orderf m’s. For
simplicity, we restrict ourselves to fourth order.

B. Normal Form of the Pendulum map

We now calculate the normal formN5AMA21 of the
pendulum map~up to fourth order! and its corresponding
transformationA. This is the next step in calculating th
dynamic moment invariants for the pendulum map. Since
linear partM̂ is already in the normal form, we consider
transformation of the type

A5e:h4 :, ~4.10!

whereh4 is a homogeneous polynomial of fourth degree.
e

To simplify the determination ofai ’s, we introduce the
real resonance basis@4#. We define the following:

u l ,k&R5
1

2
„~q11 ip1! l~q12 ip1!k1~q12 ip1! l~q11 ip1!k

…,

~4.11!

u l ,k& I5
i

2
~2~q11 ip1! l~q12 ip1!k

1~q12 ip1! l~q11 ip1!k
…, ~4.12!

where l 1k5n and l>k. Using the above real resonanc
basis, Eq.~4.7! can be written as follows:

f 45c40u4,0&R1c31u3,1&R1c22u2,2&R

1d40u4,0& I1d31u3,1& I , ~4.13!

where

c405
1

8
~c11c22c4!5

sin 4t

768
,

c315
1

2
~c12c2!5

sin 2t

96
, ~4.14!

c225
1

8
~3c113c21c4!5

t

64
,

d405
1

8
~c32c5!5

2~sin 2t !2

384
, ~4.15!

d315
1

4
~c31c5!5

cos 2t21

96
. ~4.16!

Now the normal form of the pendulum map can be written
follows:

N5AMA21

5e:h4 :M̂e: f 4 :e2:h4 :

5M̂ M̂ 21e:h4M̂e: f 4 :e2:h4 :

5M̂e:M̂21h4 :e: f 4 :e2:h4 :.

Using the Campbell-Baker-Hausdorff series@8#,

N5M̂ exp~ :M 21h42h41 f 4 :1higher order terms!,
~4.17!

which gives~up to fourth order!
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N;M̂ exp~ :M̂ 21h42h41 f 4 : !. ~4.18!

The linear partM̂ is already in the normal form. The nex
step is to simplify the Lie operator :M 21h42h41 f 4 :, so
that it is a function only ofJ1 . Let

h45a40u4,0&R1a31u3,1&R1a22u2,2&R1b40u4,0& I1b31u3,1& I .

~4.19!

Also,

M̂ 21u4,0&R5cos 4tu4,0&R2sin 4tu4,0& I ,
.
o-
si

,

M̂ 21u3,1&R5cos 2tu3,1&R2sin 2tu3,1& I ,

M̂ 21u4,0& I5cos 4tu4,0& I1sin 4tu4,0&R,

M̂ 21u3,1& I5cos 2tu3,1& I1sin 2tu3,1&R,

M̂ 21u2,2&R5u2,2&R.

Therefore, we have
M̂ 21h42h41 f 45„a40~cos 4t21!1b40sin 4t1c40…u4,0&R1„2a40sin 4t1b40~cos 4t21!1d40…u4,0& I1c22u2,2&R

1„a31~cos 2t21!1b31sin 2t1c31…u3,1&R1„2a31sin 2t1b31~cos 2t21!1d31…u3,1& I . ~4.20!
o-
q
ps

in

l

nt
As expected, the basis elementu2,2&R cannot be removed
Therefore,a22 in Eq. ~4.19! can be chosen as zero. The c
efficients of the other basis elements in the above expres
can be made zero by choosingai j ’s andbi j ’s as follows:

a40~cos 4t21!1b40sin 4t52c40,

2a40sin 4t1b40~cos 4t21!52d40,
~4.21!

a31~cos 2t21!1b31sin 2t52c31,

2a31sin 2t1b31~cos 2t21!52d31.

Thus the only nonzero term remaining inM̂ 21h42h41 f 4 is
c22u2,2&R5c22J1

2. So we have the normal form as

N5M̂e:c22J1
2 :. ~4.22!

Solving the above set of equations, we obtain

a405
1

2~12cos 4t !
„2c40~cos 4t21!1d40sin 4t…,

b405
1

2~12cos 4t !
„2c40sin 4t2d40~cos 4t21!…,

a3152
1

2~12cos 2t !
„c31~cos 2t21!2d31sin 2t…,

~4.23!

b3152
1

2~12cos 2t !
„c31sin 2t1d31~cos 2t21!…,

a2250.

Simplifying the above set of equations, we have

a4050, b4052 1
768, a3150, b3152 1

96 . ~4.24!

Thus we have succeeded in obtaining the transformation
on

A5e:h4 :, ~4.25!

whereh4 is given by substituting the values ofai j ’s andbi j ’s
in Eq. ~4.19!.

C. Dynamic moment invariants

We are now in a position to determine the dynamic m
ment invariants for the pendulum Hamiltonian. From E
~3.7!, the dynamic moment invariants of the pendulum ma
are of the form

Dk5e2:h4 :Ik , ~4.26!

whereIk’s are the normal form moment invariants given
Sec. III.

As an example, we computeD 2
(1) for the pendulum

Hamiltonian. From Eq.~4.19! ~after converting to the usua
monomial basis! we obtain

h45r 1q1
41r 2p1

41r 3q1
3p11r 4q1

2p1
21r 5q1p1

3 , ~4.27!

where

r 15~a401a31!50, r 25~a402a31!50,

r 35~4b4012b31!52 5
192, ~4.28!

r 4526a4050, r 5524b4012b3152 1
64 .

Therefore,h4 is given by

h452 5
192q1

3p12 1
64 p1

3q1 . ~4.29!

The functionally independent normal form moment invaria
I 2

(1) is given by@cf. Eq. ~3.32!#

I 2
~1!5~^q1

2&1^p1
2&!. ~4.30!

Therefore, up to fourth order, we have



in

ct-
n
ch-

mil-
um
nts

in
on-
lec-

rch
In-
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e2:h4 :I 2
~1!5e2:h4 :~^q1

2&1^p1
2&!

5~12:h4 :1¯ !~^q1
2&1^p1

2&!

5^q1
2&1^p1

2&2:h4 :^q1
2&2:h4 :^p1

2&1¯.

~4.31!

Using Eq.~2.12!, we obtain

:h4 :^q1
2&5 5

96 ^q1
4&1 3

32 ^p1
2q1

2&,

:h4 :^p1
2&52 5

32 ^q1
2p1

2&2 1
32 ^p1

4&.

The dynamic moment invariantD 2
(1) is therefore given by

D 2
~1!5e2:h4 :Ik5^q1

2&1^p1
2&2 5

96 ^q1
4&1 1

32 ^p1
4&1 1

16 ^q1
2p1

2&

1~higher order terms!. ~4.32!

Similarly, one can easily obtain other dynamic moment
variants for the pendulum Hamiltonian.
s
IP
,
L.
-

V. CONCLUSIONS

In this paper, we have outlined a procedure for constru
ing dynamic moment invariants for nonlinear Hamiltonia
systems. This was made possible by the normal form te
niques available for symplectic maps representing the Ha
tonian. We applied our method to the nonlinear pendul
Hamiltonian, and constructed dynamic moment invaria
for this system, since the results can be explicitly stated
this case. This method can be readily applied to other n
linear Hamiltonian systems once the corresponding symp
tic map is known.
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