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Dynamic moment invariants for nonlinear Hamiltonian systems
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Distributions of particles being transported through a nonlinear Hamiltonian system are studied. Using
normal form techniques, a procedure to obtain invariant functions of moments of the distribution is given.
These functions are invariant for the given Hamiltonian system and are called dynamic moment invariants.
These techniques are used to obtain dynamic moment invariants for the nonlinear pendulum Hamiltonian
system[S1063-651X99)13703-9

PACS numbegps): 41.85—p, 45.05+x

[. INTRODUCTION where[f(2),9(2)] denotes the usual Poisson bracket of the
functionsf(z) andg(z). Let f, be a homogeneous polyno-
We consider a particle distribution being transported unimial in z of degreer. Then[f,,fs] is @ homogeneous poly-
der the action of a nonlinear Hamiltonian system. It would benomial of degreer(+s—2). Next we define the exponential
useful to obtain quantities that remain invariant under thisof a Lie operator. It is called a Lie transformation, and is
transport. To this end, we study invariant functions of mo-given as follows:
ments of the distribution. Functions of moments that remain .
invariant for all linear Hamiltonian systenflselonging to the H2): A (2):"
class of kinematic invarianthave already been constructed enr= 2
[1-3]. Dynamic moment invariant&vhich remain invariant
for a given Hamiltonian systeithave been investigated for Consider the action of @nonlineay Hamiltonian system
linear systems3]. In this paper, we construct dynamic mo- specified by the Hamiltoniaii(z,t) on a particle. Letz!
ment invariants for nonlinear Hamiltonian systems. denote the phase-space coordinates of the particle atttjme

In Sec. II, we provide a brief background to Lie algebraicand z' the coordinates at some final tinhle Then one can
methods and moments of distribution. In Sec. Ill, we outlinefind a mapM, such that

a procedure for constructing dynamic moment invariants. _

This makes use of normal form techniques for symplectic '=M7. (2.9
maps. In Sec. IV, we construct dynamic moment invariants

for the nonlinear pendulum Hamiltonian. We first obtain alt can be shown(4] that this map is symplecti¢i.e., its
symplectic map corresponding to this system, and computgacobian matridV satisfies the symplectic conditidv JM
its normal form. Then we apply techniques described in Sec=J, wherelJ is the fundamental symplectic matyixBy the
[Il to obtain the dynamic moment invariants. Our conclu- Dragt-Finn factorization theorem\t can be written as an
sions are given in Sec. IV. infinite product of Lie transformation in the forid]

Z T 2.3

Il. PRELIMINARIES M=Mefsigfar.. (2.5

In this section we briefly describe the Lie algebraic tools
[4] and concepts required for our purpose. We also introduc
moments of a particle distribution and describe their trans

port under the action of a general Hamiltoninan system. ~nomogeneous polynomial of degree o
We start by defining Lie operators. Let us denote the We have considered the action of a Hamiltonian system

collection of 20 phase-space variablesg;,p; (i on a single particle. We now consider its action on a particle
1M1

whereM is the Lie transformation corresponding to the Jaco-
Eian matrixM [i.e., (I\7Iz)i=Mijzj]. Each functionf, is a

=1,2,3, ... n) by the symbok: distr.ibution. L_eth(z) be a distribution func_tion dgscribing .
particle density in phase space at the point having coordi-
z=(01,P1,92,P2 - - - :0n+Pn)- (2.  natesz. We assume that the particles do not interact with one

another(alternatively, the effects due to particle interactions
The Lie operator corresponding to a phase-space functioghould be treatable by the Vlasov approximatioAgain,
f(z) is denoted by f(z):. It is defined by its action on a representing the Hamiltonian system in terms of a symplectic
phase-space functiog(z) as shown below: map .M, we can show thdt4,3]

1(2):9(2)=[f(2),9(2)], (2.2 hin(z)=h"(M ~1z), (2.6)

whereh™ and h™ are the initial and final distributions, re-
*Also at Center for Theoretical Studies, Indian Institute of Sci- Spectively.
ence, Bangalore 560 012, |India. Electronic address: Next we define moments of the above distribution, and
rangaraj@math.iisc.ernet.in determine their evolution under the action of the Hamil-
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tonian systemor equivalently the corresponding symplectic where

map M). Let{P,(2)}[a=1,2,3 ... N(m)] denote the set .

of basis monomials of a fixed degreein the 2n phase- N=eT. 3.3
space variables wheg(m)=""2""1C . EachP(z) cor-

responds to a uniquenth-order basis momen{P,(z)) For a nonresonant Hamiltoni]

through the relation: 7=1(31,95,33, ... Jn), (3.4
(Pu(2))= f d™"z'h(z')P,(2"). @n e
_(gf+p?
The initial and final moments of the distribution before and Ji= 2 (3.9
after transport through a Hamiltonian system are therefore
given by First, we find a functiorf that is invariant unde. That
is,
<Pa(Z)>in: f d2nz/hin(z’)Pa(Z,), (28) Ik:NIkr (36)

whereZ, is a function ofkth order moment invariants. Let
P.(2) ““:f d2"z'h™(z")P,(2'). (2.9

< ) D=A"1T,. (3.7

Using the relation between the initial and final distribution Then, using Eqs(3.2), (3.6), and(3.7), we obtain

given in Eqg.(2.6), we can give a relation between the initial

and final moment§3]: MD = A INAD,
" . :A_lNA.A_:LIk
(Pa(Z)y'”:j d*"z'h"(z')P,(Mz').  (2.10
:AilNIk:Ailz-k:Dk. (38)
We write this formally as Thus we see thab, is a dynamic moment invariant of the

map M. Note that the above procedure has been used pre-
viously to find functions of phase-space variables that are
invariant under the action of a symplectic ma&). Here we
have extended this to moments.

(P(2))™=M(P(2))". (2.11)

Since M can be expressed in terms of Lie operators, it is
useful later on to have the following relatigeee Appendix

C of Ref.[3
(3D B. Normal form moment invariants

HFi(P(2))=(:f:P,(2)). (2.12 From the above discussion it is obvious that the first step
toward finding dynamic invariants is to find moment invari-
Ill. DYNAMIC MOMENT INVARIANTS FOR antsZy for symplectic maps in the normal form
HAMILTONIAN SYSTEMS €T T, (3.9
A. General concepts
. o . which implies
A function of moments that remains invariant under trans-

port through all Hamiltonian systems is called a kinematic “ 2
moment invariant. Kinematic moment invariants for linear 1+:inp:+ T+"' L=1. (3.10

Hamiltonian systems have already been obtairied]. We

call functions of moments that remain invariant only underthys a sufficient condition for the above equation to be true
the action of a particular Hamiltonian systeéor the equiva- g

lent symplectic mapdynamic moment invariants. Dynamic

moment invariants for linear Hamiltonians have already been 7. L,=0. (3.1
derived[3]. In this paper, we consider dynamic moment in-
variants for nonlinear Hamitonians. For a nonresonant Hamiltonian, we have already seemthat

Consider a nonlinear Hamiltonian system described bys a function only of the);’s. In this case, the above equation
the symplectic map\. We denote a dynamic moment in- is satisfied if the following annihilation conditions hold:
variant that is a function dfth-order moments b, . Since

Dy is invariant under the action of4, JiLe=0, i=123...n. 312

Dy=MDy. (3.1 In fact, Z, is a function of moments that is invariant under
U(l)eU(1)®---®U(1), takenn times. For convenience,
To construct these dynamic moment invariants, we considewve will call Z, a “kth-order normal form moment invari-

the normal form(5,4] of M: ant.”
With this brief background, we are in a position to con-
M=A"INA, (3.2 struct the normal form moment invariants. Consider the set
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of basis monomials of a fixed degree, {P,(2)}, {«  We restrict ourselves to two-dimensional phase space for
=1,2,... N(m)}. A general element dfP,(2)} is given by  simplicity. The most general form af$!) is then given by

the relation . , ,
I8 =A(ad) + Ax(pd) + As(asp), (3.17
(g0

n
Pa(Z)=H1 a P (3.13  whereA;, A,, andA; are as yet undetermined constants.
o These constants are fixed by ensuring that the following an-

where rW+sM4 ... 411 sM=m There is a unique MNihilation condition is satisfiefcf. Eq.(3.16]:
mth-order basis moment associated with eadh,(z)}

L1 T
through the relation given in E§2.7). Let Z{)) be a function N1:257=0, (3.18
of mth-order moments defined as follows: where
() — A \W(m)

Ty =AWm, (3.14 | ip? 1o
where the repeated indgxs summed over. The coefficients ! 2 ’
A.’s are constants and/™’s are the product of mth-order _

o L a(m) That is
basis moments. Thereforwf 's are of the form '
2.1 n2.7(1)
<Pa1(z)><Pa2(Z)>'“<Pa|(z)>- (3.15 .ql.I(z)—i—.pl.I<2 )=0. (3.20

The above condition implies thét,= A, (whereA, is arbi-

wherea < a,<---<gqj.
Wy 2 ! trary) and A;=0. Thus we finally obtain

ForZ{) to be a normal form moment invariant, it has to
satisfy the following equatioicf. Eg. (3.12]:
v 9 equatiofet. £q. (312 = A((ad)+(p3)). (3.2
3 ZW=A 3 W™M=0, i=12,...n. (3.1 . . o :
bem T n. (319 The expressions foZ Y in four- and six-dimensional
Thus our task reduces to determining the constaritssuch ~ Phase space, respectively, are given as folldvese the con-
that the above equation is satisfied. A moment invariant oftantsA;, A;, andAg are arbitrary.
the formZ () is called a pure invariant, since it is a function

2 2 2 2
of moments of the same order. One can also derive mixed A1({aD) +(p1)) +Ax((a3) +(p3)), (3.22
invariants which are functions of moments of different or-
ders. Al<<qi>+<pi>>+Az<<q§>+<p§>)+A3<<q§>+<p§>(>. ,
3.2
C. Examples Using the above procedure, we can easily derive expres-

In this subsection, we derive explicit expressions for vari-sions for other quadratic moment invariafit§, for higher
ous normal form moment invariants to illustrate how thesevalues ofl. For a two-dimensional phase space, two of them
invariants are found. First, we derive the expressionﬂgﬁ?. are given belowhere the constants; andA, are arbitrary:

T = A({ad)+(PD)%) + Axad)(pD) + (2A1= Ap){arpy)? (329

TR =A1((a3)3+(p2)®) + Ax((aD) (P22 +(a2)y%(p2)) + (BA1— A ((aZ) +(Pp2))(d1p1)?. (3.29

Next we derive the expression fﬁl(sz) where each term is a product of two cubic moments. The most general fofé%)of
(in a two-dimensional phase spads given by

TP = AP 2+ AP a:pD) + As(p(aipe) + As(ad)(p3) + As(a1p2) 2+ Ag(d1p2)(a2py)
+A(A1pD{a5) + Ag(ap1) 3+ Ag(aTp1){(as) + A a3)?. (3.26

Applying Eq. (3.16), we obtain

(6A;—2A3—2A5)(P3)(A1p3) + (2A;— 3A,— Ag)(PI)(a5P1) — Ax(P3) >+ (3A— 2A6)(01p2) 2+ (Ag— A7)(p3)(a3)
+(3As+4A5— 3A;— 4Ag)(A2P1)(A1PT) + (3A4+ As— 2A0)(a3)(01p2) + (2As— 3Ag)(02p) >
+(2A7+ 2Ag—6A10(03)(aipa) +Ag(a3)?=0. (3.27)

Setting the coefficient of each independent term to be zero, we obtain
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A2=0, A=Ay, Az=A7,
A4:O, A5:3A1_A3, (32&

AGZO, A8:A5, A9:O

Thus we finally obtain

7= A1((aD)*+(p1)?) + (3A1— Ag) ((Q1p1)*+(diP)*) As({ai){aapi) + (PiX{aipL)), (3.29

whereA; andA; are arbitrary constants.

Using the above procedure, we can also derive the following quartic moment invaagais,A; and A, are arbitrary

constants
T4 =As((ap) +(p1) +2(azp)), (330
T@=A((aD)*+(pD)?) +Ax((a) +(p1)){aZpD) + 2Ax(a)(pD)
+3(12A;— Ao)(AZPE) %+ (4A1— Ar)({a1P1)° +(a1p)?). (331
|
D. Functionally independent invariants <qzll>2+<p¢ll>2+ 6(q§p§>2+4<q§pl>2+4<q1pf>2
In this subsection, we enumerate the functionally indepen- (3.38

dent normal form moment invariants. We observe that there
is only one functionally independent invariant in the moment

invariants of the fornZ ", viz. and
CHRR(H2 (3.32
" (ap)+(p1)(aipD) + 3(a1)(p?)
All the otherZ3" invariants are obtained by multiplying the 1,2 22 3 \2 32
above equation by a scalar. For th§ invariants, there are 2(01PD) "~ (qapy)"—(a:pp)™.  (3.39
only two functionally independent invariants, viz.
2\2 2\2 2 Similarly, we can easily find the functionally independent
+ +2 3.3
(a0 + (P1)"+2(1py) (333 oment invariants of the othef!'s. Once we have the
and above normal form invariants, we can easily find the corre-
sponding dynamic invariants for a particular Hamiltonian
(a2)(P) ~ (a:P1)*. (334  system by using E43.).
These are obtained by assigniaAg=1, A,=0 andA;=0,
A,=1, respectively, in Eq(3.24. All the otherZ$? invari- IV. DYNAMIC MOMENT INVARIANTS FOR THE
ants are obtained by a linear combination of the above two NONLINEAR PENDULUM HAMILTONIAN

functionally independent moment invariants.

: ° In this section, we will obtain the dynamic moment in-
Using the above procedure, we find that there are twQariants for a distribution of particles going through a poten-

functionally independer{” invariants given by tial given by the pendulum Hamiltonian. We consider the

- - 3 , 2 pendulum Hamiltonian, since it is a prototypical nonlinear
(qD) (P +3(a)(a1pD) +3(p1){aip1) (3.39  Hamiltonian system. Further, explicit results can be written
down in this case. But the method outlined in this paper is

and equally applicable to any other nonlinear Hamiltonian sys-

. s o 5 5 s, 2 tem. The expressions for moment invariants, however, are
(91p1)*+(a1p1)—(a1){d1p1) —(P1){d1P1) complicated for a general system, and hence cannot be writ-
(3.39  ten in a compact form. For this reason, we have not consid-

ered such systems in this paper even though the full power of

The single functionally independefy") invariant is given  the Lie algebraic approach becomes evident only in such

by

cases. For such complicated systems, no analytic solutions
. . - are available and the invariants cannot be written down by
(ap) +(p1) +2(q1p1), (3.37  direct methods. Thus a perturbatifiée algebrai¢ approach
outlined below in this section is the only viable solution. To

and the two functionally independeﬁtﬁf) invariants are obtain the dynamic moment invariants, we first need the
given by symplectic map corresponding to the pendulum Hamiltonian.



PRE 59

A. Pendulum map

We consider the pendulum Hamiltoni&h(q,,p1),

1
H(d.,p1)= 5 pi—cosay) +1. (4.9
On expanding, we have
H(qlvpl):H2+H4+'”1 (42)
where
1 1 1
Hp=5pi+ 505, He=— 70l 4.3

The symplectic map\ corresponding to the pendulum

Hamiltonian is given by

M=I\7Ie:f3:e:f4:---. (4_4)
The Jacobian matriM is given by a 2<2 rotation matrix
[7]:
M cost  sint 4
| —sint cost)" “.9

Since H,,,,=0(n=1,2,...), we have f,,,1;=0(n
=1,2,...). Inparticular,f3=0. The fourth degree polyno-
mial f, is given by[4,7]

t 1 [t
f4=J dt'H,M~1z)=—| dt’(q, cost’ — p, sint’)%.
0 24)o

(4.6
On integrating we obtain
f4=C1q7+CopT+Ca03ps +Ca05p,+Csa1pT, (4.7
where
C;=155(3t+ % sin4t+2 sin ),
Co=183(3t+ 7 Sin4t—2 sin ), (4.9
C3=—35(1—codt), c,=m35(4t—sin4t),
Cs=— 55 (sin*t). (4.9

In principle, we can also calculate the higher oréigis. For
simplicity, we restrict ourselves to fourth order.

B. Normal Form of the Pendulum map

We now calculate the normal forov=AMA™! of the
pendulum map(up to fourth order and its corresponding

transformationA. This is the next step in calculating the

DYNAMIC MOMENT INVARIANTS FOR NONLINEAR ...
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To simplify the determination 0&;’s, we introduce the
real resonance badig]. We define the following:

1
I ,k>R:§ (ap+ipp)' (a1 —ip)*+ (g —ipy)'(as +ipp)"),
(4.11)
1K) =5 (= (ay+ipp) (g = ip)*

(4.12

wherel+k=n and I=k. Using the above real resonance
basis, Eq(4.7) can be written as follows:

+(d1—ipy)' (a1 +ipp)Y),

f4=C404,0r+C31/3, DrtC222,2r

+d40/4,0,+d3|3,1), (4.13
where
1 sin 4t
C4o:§(01+02_04): =68’
sin 2t
03125(01_02): 96 (4.149
1 t
022=§(SCl+3c2+c4)= &4’
1 —(sin2t)?
d40:§(C3_C5): 384 ' (413
1 cosa—1
dSl:Z(C3+ C5): T (416)

Now the normal form of the pendulum map can be written as
follows:
N=AMA™?!
:e:h4:|\‘/|e:f4:ef:h4:

|\7| M 7le:h4|\7| efaig=ihs:

e:l(n’lh4:e:f4:e—:h4:_

Il
>

dynamic moment invariants for the pendulum map. Since th&Jsing the Campbell-Baker-Hausdorff ser{&s,

linear partM is already in the normal form, we consider a

transformation of the type
A= e:h4:,

(4.10

whereh, is a homogeneous polynomial of fourth degree.

N=M exp(:M ~*h,—h,+f,: +higher order terms
(4.17

which gives(up to fourth order
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N~M exp(:M~thy,—h,+1f,:). (4.18 M ~13,1)r=cos 2|3,1)g—sin 2t|3,1),,

The linear partM is already in the normal form. The next
step is to simplify the Lie operatoM ~*h,—h,+f,:, so
that it is a function only ofl;. Let

M ~1|4,0),=cos 4|4,0), + sin 4t|4,0),

M~13,1), =cos 2|3,1), +sin 2t3,Dg,
hy=a,404,00rt 3|3, D+ a2, 2,2r+ b 4,0+ b313,2), . 3.3, 3.2 13.0r

(4.19 )

Also, M™Y2,2r=122r.

M ~1|4,0)r=cos 4|4,0)g—sin 4t|4,0),, Therefore, we have
|
M~ h,—h+ 4= (a40(COS 4 — 1)+ boSin 4t + C40)| 4,00+ (— Ao Sin 4t + byg(COS 4 — 1) +dg)|4,0), + €24 2,Dr
+ (agy(cos 2 — 1)+ bg; Sin 2t+C39)| 3, Hg+ (—ag; Sin 2t + bgy(cos 2 — 1) +d3y)[3,1), . (4.20
|

As expected, the basis elemgRt2)z cannot be removed. A=geha’, (4.25

Therefore,a,, in Eq. (4.19 can be chosen as zero. The co-

efficients of the other basis elements in the above expressialhereh, is given by substituting the values afi's andb;;’s
can be made zero by choosiag’s andbj;’s as follows: in Eq. (4.19.

a9(COS4—1)+byysindt=—c . . .
ol )+ bao 40 C. Dynamic moment invariants

—aySindt+byy(cos4—1)=—dyq, We are now in a position to determine the dynamic mo-
(4.2  ment invariants for the pendulum Hamiltonian. From Eq
az(cos2—1)+bg;sin2t=—cgyy, (3.7), the dynamic moment invariants of the pendulum maps

are of the form

—agzSin2t+bg(cos2—1)=—dj;. e

31 3 ) 31 Dk=e_'h4'Ik, (4.2
Thus the only nonzero term remaininghh~*h,—h,+f, is

€2, D= szJf- So we have the normal form as whereZ,’s are the normal form moment invariants given in

Sec. lll.
~ (1)
N=Me s, 4.22 As an example, we comput®3~’ for _the pendulum
Hamiltonian. From Eq(4.19 (after converting to the usual
Solving the above set of equations, we obtain monomial basiswe obtain
. ha=1107+ 1P+ 1303p1+1405p5+ 150103, (4.27)

a40=m(—040(0054—1)+d4OS|n4t),

where
= (— in4t— - ri=(agtagz) =0, ry=(az—as)=0,
bao 2(1—cos4)( CapSin 4t —dyg(cos 4 —1)), 1= (240t asy) 2=(a40—azy)

r3=(4bgo+2b3)) = — 753, (4.28

a31= - _—(C31(COS A— 1)_d3lsin 2t),
2(1—cos 2) r,=—6a,0=0, r5=—4bsot+2bs=—&.

(4.23
Therefore h, is given by
b31: - _—(C3lsin 2t+ d31(COS 2_ 1)),
2(1-cos2) hs=— 15205P1— 82 P3d; - (4.29

az;=0. The functionally independent normal form moment invariant

Simplifying the above set of equations, we have 73" is given by[cf. Eq. (3.32]

a40: 0, b40: ~ 768 a31:0, b3l: _&5 (424) I(Zl):(<q§>+<p§>) (43@

Thus we have succeeded in obtaining the transformation, Therefore, up to fourth order, we have
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e M T =e M ((q]) +(p))
=(1—:hg:+-)(ad) +(pD)
=(aD)+(p1)—:ha:(af) —thy:(pf) +---.

(4.3)
Using Eq.(2.12, we obtain
hai(ad)=ss(a) + (piaD),
thai(pD) =~ 5(aipD) — 5(pY).
The dynamic moment invaria®{" is therefore given by
D=6 " T=(q1)+ (1) — 5s(a1) + 3(p1) + Fs(aZp)
+ (higher order terms (4.32

V. CONCLUSIONS

In this paper, we have outlined a procedure for construct-
ing dynamic moment invariants for nonlinear Hamiltonian
systems. This was made possible by the normal form tech-
niques available for symplectic maps representing the Hamil-
tonian. We applied our method to the nonlinear pendulum
Hamiltonian, and constructed dynamic moment invariants
for this system, since the results can be explicitly stated in
this case. This method can be readily applied to other non-
linear Hamiltonian systems once the corresponding symplec-
tic map is known.
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